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Background 

Aquatic ecosystem metabolism refers to the ecosystem-scale rates of 
organic matter cycling in aquatic ecosystems - namely gross primary 
production (GPP) and ecosystem respiration (ER) - that form the base of food 
webs and influence biogeochemical cycling rates (Jankowski et al. 2021). From 
a management perspective, ecosystem metabolism is interesting as GPP and 
ER responds to environmental change and disturbances in streams, lakes, 
wetlands, as well as estuaries (Hoellein et al. 2013), and can therefore be used 
as indicators of the ecosystem’s health status. Metabolism can be derived 
from diurnal variations in dissolved oxygen (DO) concentrations based on in-
situ sensor measurements. Historically, the cost and level of accuracy of 
oxygen sensors have limited the widespread application of metabolism. 
However, recent advances in sensor and modelling technologies now enable 
routine monitoring of dissolved oxygen (DO) at high quality and low cost, and 
real-time modelling of aquatic ecosystem function (GPP and ER), including the 
influence of key physical processes such as gas exchange with the 
atmosphere. WateriTech has developed a new inverse modelling approach, 
combining real-time sensor monitoring with machine learning (differential 
evolution), to deliver cost effective estimates of aquatic metabolism. The 
method has been tailored for stratifying (lakes and fjords) and vertically mixed 
(streams) water bodies, respectively. This white paper describes the key 
concept for deriving metabolism in stratifying lakes and fjords. 
 
 

About WateriTech & WaterWebTools 

WateriTech is a research and consultancy company founded in 2019 by world leading 
researchers within water quality modelling and data analytics. The company is based 
in Denmark but offer its services and solutions globally. WateriTech specializes in the 
development and application of open source hydrological and ecological models, IoT 
sensor monitoring and advanced data analytics, and focus on digital solutions for 
addressing water quality, flooding and drought challenges. WateriTech and partners 
have developed the highly recognized WaterWebTools platform, which is a user-
friendly web-platform for live streaming, quality control and postprocessing of sensor 
data, as well as operationalization of hydrological and water quality models for 
forecasting purposes. The WaterWebTools platform, which also allows transmission of 
data to customers own data platform or 3. party platforms, is widely used in Denmark 
and across Europe by the municipal and water utility sectors, private companies as 
well as research institutions. 
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Introduction 

The primary drivers of ecosystem metabolism include temperature, light, 
hydrology, and the quantity and quality of organic matter and nutrients (Battin 
et al. 2023; Caffrey 2004; Solomon et al. 2013). Metabolic rates can be derived 
based on different approaches, including isotope analysis, in-situ incubation 
experiments, field campaigns for monitoring the mass balance of carbon, and 
sensor technology. Advances in sensor technology during the past 10 years, 
including improved accuracy and stability and lower cost, has enabled a more 
widespread use of this approach for deriving metabolism (Hall and Hotchkiss 
2017). Using one of more sensors installed in-situ, water temperature and 
oxygen concentration is measured in high frequency (typically 10-30 minute 
intervals). Using a process-based model that is calibrated to the daily 
variation in oxygen concentrations, GPP and ER can be estimated for each 
single day. The method developed by WateriTech is inspired partly by the 
approaches described by Staehr et al. (2012), Obrador et al. (2014) and Giling 
et al. (2017), with several new advances, including advanced qa/qc routines 
for cleaning sensor data, improved thermocline processing, more accurate 
numerical integration, use of differential evolution for model parameter 
optimization, parameter uncertainty estimation, parallel processing of model 
runs for large datasets, and operationalization of the model via the 
WaterWebTools portal. 
 

Data collection 

When estimating metabolism in stratifying lakes and fjords, vertical profiles of 
subdaily (e.g., 15 min intervals) water temperature and DO are required. 
WateriTech produces data buoys for this specific purpose (Fig. 1), but data 
from 3. party can also be linked to the WaterWebTools platform, thereby 
enabling metabolism estimates for any location on the planet.  
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Fig. 1. Example of a data buoy (left) produced by WateriTech. Here, several OPTOD optical 
oxygen and temperature sensors (right) are placed at fixed depths, where the number of 
sensors and their placement is adapted to the individual system. 

 
Besides in-situ sensor data, local data for incoming radiation, wind speed and 
barometric pressure is also required. By default, WaterWebTools will 
automatically harvest local data from the ERA5 gridded weather product, 
which is available globally in near real-time and hourly temporal resolution, 
and for spatial grids of approx. 30 km spacing. Time series of Secchi depth can 
also be utilized or alternatively estimated from a cosine seasonal function, and 
is used to derive photosynthetic active radiation (PAR) as a function of depth 
and time.  
 

Data pre-processing 

A series of pre-processing steps are first conducted to format raw sensor data 
and weather data into quality assured and quality controlled equidistant time 
series. 
 

Data cleaning and control 

To achieve adequate quality of the in-situ collected data prior to metabolism 
processing, the raw sensor data is initially harmonized with respect to 
sampling frequency to create an equidistant time series followed by filtering 
on sensor-specific error values. Hereafter, outliers are detected with a 
modified version of the SentemQC approach by van't Veen et al. (2025), which 
identifies and marks anomalies in the dataset using successive moving 
windows with varying window sizes. This method has proved efficient for 
cleaning sensor data, not only for identifying individual outliers, but also 
clusters of anomalies. 
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Data resampling and interpolation 

After cleaning and control the data is processed further with resampling into 
half hourly intervals, and then smoothed using a 4-hour running window.  
These steps are based on experiences and recommendations from the 
scientific literature, including Staehr et al. (2012), Obrador et al. (2014) and 
Giling et al. (2017). Hereafter, data is interpolated to a user defined depth grid 
that represents the waterbody.  
 

Weather and light data 

Representative weather and light data are pre-processed according to the 
following steps: 

• Download local weather data including incoming short wave radiation 
(E, W m-2), wind speed (ws, m s-1), and barometric pressure (P, kPa). 

• Convert short wave radiation into photosynthetic active radiation at 
the surface (PAR0, µmol m-2 s-1), where: 

PAR0 = E * 4.6 * 0.45 (Giling et al. 2017). 
• Calculate Secchi depth (sd, m) for each day from cosine function 

(which reads maximum sd, minimum sd, and day of the year of 
maximum sd) or read this directly from external file 

• Calculate light attenuation (KD, m-1) from Secchi depth, where: 
KD = 1.7 / sd (Giling et al. 2017)  

• Derive PAR (µmol m-2 s-1) for each layer depth (z) layer based on Secchi 
depth, where: 

PAR(z) = PAR0 · e KD · z (Giling et al. 2017) 
• Interpolate PAR to same depth grid and temporal resolution as sensor 

data. 
• Interpolate wind speed and barometric pressure to same temporal 

resolution as sensor data. 

 

Thermocline processing 

The be able to take into account the effects of deepening of the surface mixed 
layer, and the effects of gas-exchange between the water and the 
atmosphere, when modelling oxygen concentrations and metabolism, the 
surface mixed layer depth and the bottom depth of the metalimnion must first 
be derived. When vertical temperature and density gradients are small, it can 
sometimes be difficult to detect these. WateriTech has therefore experimented 
with several different approaches for detecting these, including f.x. that 
typically used in metabolism studies of stratifying water bodies (e.g. Staehr et 
al. 2012, Obrador et al. 2014, Mziray et al. 2024). We have found that the 
piecewise linear segmentation algorithm described by Xu et al. (2019) is 
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generally the best and most stable at detecting mixed layer depth, 
thermocline depth, and the bottom depth of the thermocline. This approach is 
therefore used as a basis. In cases where this approach cannot detect mixed 
layer depth, we used the simple density gradient approach by Wilson et al. 
(2020) to estimate the mixed layer depth. In summary the steps for 
thermocline processing are: 

• Calculate thermocline characteristics based on Xu et al. (2019) and 
Wilson et al. (2020) to identify surface mixed layer depth (Zmix), and the 
bottom depth of the metalimnion (Zmeta_lower). 

• If mixed layer depth is not detected by approach in Xu et al. (2019), use 
approach in Wilson et al. (2020). If thermocline is also not detected 
using approach by Wilson et al. (2020), assume that water column is 
fully mixed. 

• Import hypsograph data and calculate layer areas and volumes for 
each depth grid. 
 

Metabolism modelling 

The main body of the metabolism model is a differential equation (Staehr et 
al. 2012), which describes the changes in oxygen concentration for each depth 
layer (i) due to gross primary production (GPP), ecosystem respiration (ER), 
the oxygen flux due to reaeration between the water surface and the 
atmosphere (Ds), the oxygen flux due to turbulence and diffusion (eddy 
diffusivity) (Dv), and the oxygen flux due to changes in mixing depth (Dz): 
 

∆𝑶𝟐(𝒊)

∆𝒕
= 𝑮𝑷𝑷𝒊 − 𝑬𝑹𝒊 − 𝑫𝒔(𝒊) − 𝑫𝒗(𝒊) + 𝑫𝒛(𝒊) 

 
To be able to solve this equation, each of these terms has to be derived for 
each individual layer. 
 

Gross primary production 

GPP (g O2 m-3 h-1) for each depth layer (i) is calculated based on approach in 
Song et al. (2016), and derived from Pmax(i), the maximum photosynthetic rate 
(g O2 m-3 h-1) at saturating light for layer i, α(i), the photosynthetic efficiency 
coefficient (g O2 m-3 h-1 [µmol photons m-2 s-1]-1) for layer i, temp(i), the water 
temperature (°C) of layer i, and P a temperature coefficient for primary 
production: 
 

𝑮𝑷𝑷(𝒊) = 𝑷𝒎𝒂𝒙(𝒊) ∙ 𝒕𝒂𝒏𝒉 (
𝜶(𝒊) ∙ 𝑷𝑨𝑹(𝒛𝒊)

𝑷𝒎𝒂𝒙(𝒊)
) ∙ 𝜽𝑷

(𝒕𝒆𝒎𝒑𝒊−𝟐𝟎) 
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Where zi is the depth (m) of layer i, and where the temperature coefficient (P) 
is set to 1.036, as in Song et al. (2016). Pmax(i) and α(i) are two of the three 
parameters that are automatically calibrated by the model using a differential 
evolution algorithm. 
 

Ecosystem respiration 

The ecosystem respiration rate (ER) (g O2 m-3 h-1) is determined for each layer 
from R20, the respiration rate at 20°C (g O2 m-3 h-1), and R a coefficient for the 
thermal dependence of respiration: 
 

𝑬𝑹(𝒊) = 𝑹𝟐𝟎(𝒊) ∙ 𝜽𝑹
(𝒕𝒆𝒎𝒑𝒊−𝟐𝟎) 

 
Where a temperature coefficient (R) of 1.073 is used, based on Jørgensen and 
Bendoricchio (2001). R20(i) is automatically calibrated by the model using a 
differential evolution algorithm. 
 
 

Atmosphere-water gas exchange 

Several approaches for estimating the gas exchange between the water 
surface and the atmosphere have been reported in the literature. To 
accommodate the strengths of different approaches, we derive the mean gas 
exchange from an ensemble of approaches. The flux of oxygen between the 
water and the atmosphere (Ds, g O2 m-3 h-1) is calculated as: 
 

𝑫𝒔(𝒊) =
𝑲𝒔,𝒎𝒆𝒂𝒏 ∙ (𝑶𝟐(𝒊) − 𝑶𝟐𝒔𝒂𝒕(𝒊))

𝒁𝒎𝒊𝒙
 

 
Where Ks,mean is the mean gas exchange coefficient for oxygen (m h-1), based 
on the average of an ensemble comprised of four empirical relations, and O2sat 
is the oxygen concentration at saturation level at the given surface water 
temperature and barometric pressure (g O2 m-3).  
 
The overall flux oxygen between water and atmosphere flux can be either 
positive (i.e. oxygen going into the water from the atmosphere, when water is 
undersaturated with oxygen) or negative (i.e. oxygen leaving the water due to 
supersaturation). The oxygen concentration at saturation level is derived from 
the approach in Song et al. (2016): 
 

𝑶𝟐𝒔𝒂𝒕(𝒊) = 𝒆
(−𝟏𝟑𝟗.𝟑𝟒𝟒𝟏+

𝟏𝟓𝟕𝟓𝟕𝟏𝟎
𝒕𝒆𝒎𝒑(𝒊)+𝟐𝟕𝟑.𝟏𝟓

−
𝟔𝟔𝟒𝟐𝟑𝟎𝟖𝟎

(𝒕𝒆𝒎𝒑(𝒊)+𝟐𝟕𝟑.𝟏𝟓)𝟐+
𝟏𝟐𝟒𝟑𝟖𝟎𝟎𝟎𝟎𝟎𝟎

(𝒕𝒆𝒎𝒑(𝒊)+𝟐𝟕𝟑.𝟏𝟓)𝟑−
𝟖𝟔𝟐𝟏𝟗𝟒𝟗𝟎𝟎𝟎𝟎𝟎

(𝒕𝒆𝒎𝒑(𝒊)+𝟐𝟕𝟑.𝟏𝟓)𝟒)
∙

𝑷𝒂 ∙ 𝟎. 𝟗𝟗𝟖

𝟏𝟎𝟏. 𝟑
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Where Pa is the barometric pressure (kPa). 
 
The mean gas exchange coefficient (Ks,mean) is derived from the gas exchange 
velocity for a Schmidt number of 600 (K600, m h-1), and a temperature 
correction based on Raymond et al. (2012): 
 

𝑲𝒔,𝒎𝒆𝒂𝒏 = 𝑲𝟔𝟎𝟎,𝒎𝒆𝒂𝒏 ∙ (
𝑺𝒄

𝟔𝟎𝟎
)

−𝟎.𝟓

 

 
Where Sc is the dimensionless Schmidt number for the temperature of the 
surface layer, temp(surf) (derived from Raymond et al. 2012): 
 

𝑺𝒄 = 𝟏𝟓𝟔𝟖 − 𝟖𝟔. 𝟎𝟒 ∙ 𝒕𝒆𝒎𝒑(𝒔𝒖𝒓𝒇) + 𝟐𝟏𝟒𝟐 ∙ 𝒕𝒆𝒎𝒑(𝒔𝒖𝒓𝒇)𝟐 − 𝟎. 𝟎𝟐𝟏𝟔 ∙ 𝒕𝒆𝒎𝒑(𝒔𝒖𝒓𝒇)𝟑 

 
K600,mean (m h-1) is first calculated from four individual estimates of K600, where 
ws is wind speed (m s-1), and LA is lake area (km2): 
 

Vachon and Prairie (2013):  𝑲𝟔𝟎𝟎(𝟏) =  
(𝟐.𝟓𝟏 + 𝟏.𝟒𝟖 ∙ 𝒘𝒔 + 𝟎.𝟑𝟗 ∙ 𝒘𝒔 ∙ 𝒍𝒐𝒈𝟏𝟎(𝑳𝑨))

𝟏𝟎𝟎
   

 

Cole and Caraco (1998):  𝑲𝟔𝟎𝟎(𝟐) =  
(𝟐.𝟎𝟕 + 𝟎.𝟐𝟏𝟓∙𝒘𝒔𝟏.𝟕 )

𝟏𝟎𝟎
     

 

Schilder et al. (2016):  𝑲𝟔𝟎𝟎(𝟑) =  
(𝟎.𝟗 + 𝟎.𝟗𝟕∙𝒘𝒔 )

𝟏𝟎𝟎
    

 

Crusius and Wanninkhof (2003):  𝑲𝟔𝟎𝟎(𝟒) =  
(𝟎.𝟏𝟔𝟖 + 𝟎.𝟐𝟐𝟖∙𝒘𝒔𝟐.𝟐 )

𝟏𝟎𝟎
    

 
Mean K600:  𝑲𝟔𝟎𝟎,𝒎𝒆𝒂𝒏 = 𝒎𝒆𝒂𝒏(𝑲𝟔𝟎𝟎(𝟏), 𝑲𝟔𝟎𝟎(𝟐), 𝑲𝟔𝟎𝟎(𝟑),𝑲𝟔𝟎𝟎(𝟒)) 
 
 

Turbulent diffusion 

We have implemented two options for deriving the oxygen flux between layers 
driven by turbulent diffusion (eddy diffusivity). The first approach is based on 
Staehr et al. (2012), where the flux (Dv, g O2 m-3 h-1) is calculated from: 
 

𝑫𝒗(𝒊) = [
𝑲𝒗(𝒊) ∙ (𝑶𝟐(𝒊) − 𝑶𝟐(𝒊−𝟏)) + 𝑲𝒗(𝒊+𝟏) ∙ (𝑶𝟐(𝒊) − 𝑶𝟐(𝒊+𝟏))

𝒉
] ∙

𝑨𝒊

𝑽𝒊
 

 
Where Kv(i) is the vertical turbulent diffusivity of layer i, Ai is the horizontal area 
(m2) of the water column at layer i (derived from hypsograph), and Vi is the 
volume (m3) of layer i.  
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Based on Staehr et al. (2012), and originally by Hondzo and Stefan (1993), Kv(i) 
can be estimated from the Brunt-Väisälä buoyancy frequency (N2

(i)), which 
can be determined from the density gradient between water layers: 
 

𝑲𝒗(𝒊) = 𝟐. 𝟗𝟒𝟏 ∙ 𝟏𝟎−𝟑 ∙ (𝑨𝒊 ∙ 𝟏𝟎−𝟔)𝟎.𝟓𝟔 ∙ (𝑵(𝒊)
𝟐 )−𝟎.𝟒𝟑 

 
The Brunt-Väisälä buoyancy frequency is first determined as: 
 

𝑵(𝒊)
𝟐 = −

𝒈

𝝆𝒊
∙

(𝝆𝒊 − 𝝆(𝒊+𝟏))

∆𝒛
 

 
Where g is the gravitational acceleration constant (9.80665 m s-2), ρ is the 
water density (g cm-3) and ∆z is depth (distance) between the centroids of 
layers i and i+1 (m).  
 
We determine the water density from Kalff (2002) as: 
 

𝝆(𝒊) = 𝟏 − 𝟔. 𝟔𝟑 ∙ 𝟏𝟎−𝟔 ∙ (𝒕𝒆𝒎𝒑𝒊 − 𝟒)𝟐 

 
As an alternative and more complex approach, the vertical turbulent 
diffusivity, Kv(i), may also be read in from external file, and can thereby be 
based directly on a more complex physical model such as the General Ocean 
Turbulence Model (GOTM), following the approach in Mziray et al. (2024) and 
Trolle and Nielsen (2024). This will of course require that a physical model has 
been set up for the system, and that this model gives a good representation 
of the vertical mixing dynamics. 
 
 

Mixed-layer deepening 

The deepening rate of the surface mixed layer (∆Zmix ∆t-1; m h-1) describes the 
velocity of the surface mixed-layer deepening in both directions; it is positive 
when the volume of the hypolimnion is decreasing and negative when the 
hypolimnetic volume is increasing (Staehr et al. 2012). By dividing the 
deepening rate by the height (h) of the discrete depth layers and multiplying 
by the oxygen concentration (O2) gradient between two adjacent layers, we 
can estimate the flux of oxygen due to mixed-layer deepening (Dz, g O2 m-3 h-

1): 

𝑫𝒛(𝒊) =
∆𝒁𝒎𝒊𝒙

∆𝒕
∙

(𝑶𝟐(𝒊) − 𝑶𝟐(𝒊+𝟏))

𝒉
 

 
As in the approach in Giling et al. (2017), Dz is calculated and applied only for 
layers within the metalimnion (i.e. all layers from depth = Zmix to depth = 



 

 

  WateriTech | 12 / 18 

Zmeta_lower, +/- layer height). We have implemented an option to set a user-
defined minimum threshold for ∆Zmix ∆t-1, before including the flux of oxygen 
due to mixed-layer deepening. This is implemented in an attempt to prevent 
short-term surface-water microstratification inaccurately affecting estimates 
of Dz. 
 

Calibration of model parameters 

The metabolism model has been developed in Python, where the three model 
parameters: Pmax, α and R20, are calibrated for each single layer for each single 
day. The model user can choose between a series of numerical integration 
approaches and time steps to solve the metabolism model, but the 4th order 
Runge-Kutta approach with an integration time step of 0.5 hour is used by 
default. A differential evolution algorithm is used to optimize the model 
parameters, which will automatically compare sensor-based observations 
with the model estimated oxygen concentrations, and optimize the model fit 
to observations. The differential evolution algorithm seeks to minimize an 
objective function (by default set to the root-mean-squared-error) for each 
single layer and each single day, and the final GPP and ER estimates are 
extracted from the calibrated model. Models with several parameters, such as 
the metabolism model, can exhibit equifinality, where good fits to observed 
data can be achieved by several different parameter value combinations, 
some unrealistic (e.g., Appling et al. 2018). The model approach by WateriTech 
overcomes this by constraining model parameter optimization to realistic 
ranges, and also by allowing the option to run an ensemble of model 
parameterizations using different initial parameter seeds for the differential 
evolution algorithm. The mean and the variation in model parameterization 
and simulated metabolism can then be extracted. In practice, we have found 
that even though the metabolism model may exhibit some degree of 
equifinality, the controlled parameter search results in similar estimates of GPP 
and ER, and therefore the effect of running ensembles is somewhat limited. 
 

Operationalization and post-processing  

WaterWebTools integration 

The entire model workflow is automated via the WaterWebTools platform, 
where sensor data is live-streamed and pre-processed according to the steps 
described previously, local weather data is also harvested, and the 
metabolism model is executed operationally for each 24-hour time period. 
Parameter bounds used by the differential evolution algorithm, applied when 
optimizing the metabolism model, are constrained to value-ranges reported 
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in the literature (e.g. Hanson et al. 2008; Martinsen et al. 2022, also see 
Appendix), which ensure that the calibrated model parameters are within 
naturally realistic ranges. The output from the model can be followed live via 
the WaterWebTools platform (as seen in example below), and the platform 
can also be used to look for long-term trends in the ecosystem’s metabolism, 
and thereby whether the health of the ecosystem is undergoing change.  
 

      
Fig. 2. Example of how oxygen and temperature profiles, and derived metabolism can be 
viewed within the WaterWebTools portal. 
 

Metabolic fingerprint 

If one or several years of metabolism data is available, we can also derive 
the metabolic fingerprint of the lake or fjord (Bernhardt et al. 2018). This 
represents the entire distribution of daily estimates of GPP and ER that are 
observed for a stream, lake or fjord, produced through kernel density plots, 
which allow visualization of peak metabolic rates, the most dominant 
combinations of GPP and ER, represented by centroid(s) of the metabolic 
fingerprint, as well as the variance in their ratio (Fig. 3). 
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Fig. 3. The metabolic fingerprint (plot to the right) is a diagnostic tool first described by 
Bernhardt et al. (2018). It can be used for comparing annual patterns of metabolism across 
streams or across years for the same stream. The “fingerprint” is represented as a kernel 
density plot of daily estimates of GPP and R rates observed within the stream. 
 
 
The metabolic fingerprint can be produced for each single year, and then used 
to follow long-term trajectories of the ecological balance of streams, helping 
us track changes that can signal stress or improvements in water quality. Is 
the river responding to improved upstream wastewater treatment, can we see 
any effects of implementing best-management-practices in nearby 
agriculture, or does restoration of floodplains or other nature-based-solutions 
have the expected benefits for the aquatic ecosystem? These are just some of 
the questions we can try to answer by keeping track of the metabolism. 
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Appendix 

 

Parameter bounds 

Parameter bounds used when running the differential evolution algorithm 
have been derived from a review of metabolism studies, thereby ensuring 
that calibrated parameters are within naturally realistic ranges. 
 

Parameter Unit Min. Max. References 
Pmax g O2 m-3 h-1 0.001 2.1 Hanson et al. (2008), table 2  

min. Pmax = 0.004, max. Pmax = 2.08 
 

α g O2 m-3 h-1 
[µmol photons 
m-2 s-1]-1 

0.001 0.01 Obrador et al. (2014), page 1236 
min. α = 0.004, max. α = 0.0096 

 

R20 g O2 m-3 h-1 0.001 1.75 Solomon et al. (2013), Fig. 7  
min. R20 = 0, max. R20 = 0.625 

 
Martinsen et al. 2022 (Fig 8) 

min. R20 = 0, max. R20 = 0.80 
 

Assuming that R20 ~ 85% of Pmax  
(ratio derived from Song et al. (2016), 

table A1) 
min. R20 = 0, max. R20 = 1.75  

 
 


