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Background 

Aquatic ecosystem metabolism refers to the ecosystem-scale rates of 
organic matter cycling in aquatic ecosystems - namely gross primary 
production (GPP) and ecosystem respiration (ER) - that form the base of food 
webs and influence biogeochemical cycling rates (Jankowski et al. 2021). From 
a management perspective, ecosystem metabolism is interesting as GPP and 
ER responds to environmental change and disturbances in streams, lakes, 
wetlands, as well as estuaries (Hoellein et al. 2013, Munn et al. 2020), and can 
therefore be used as indicators of the ecosystem’s health status. Metabolism 
can be derived from diurnal variations in dissolved oxygen (DO) 
concentrations based on in-situ sensor measurements. Historically, the cost 
and level of accuracy of oxygen sensors have limited the widespread 
application of metabolism. However, recent advances in sensor and 
modelling technologies now enable routine monitoring of dissolved oxygen 
(DO) at high quality and low cost, and real-time modelling of aquatic 
ecosystem function (GPP and ER), including the influence of key physical 
processes such as gas exchange with the atmosphere. WateriTech has 
developed a new inverse modelling approach, combining real-time sensor 
monitoring with machine learning (differential evolution), to deliver cost 
effective estimates of aquatic metabolism. The method has been tailored for 
stratifying (lakes and fjords) and vertically mixed (streams) water bodies, 
respectively. This white paper describes the key concept for deriving 
metabolism in streams. 
 
 

About WateriTech & WaterWebTools 

WateriTech is a research and consultancy company founded in 2019 by world leading 
researchers within water quality modelling and data analytics. The company is based 
in Denmark but offer its services and solutions globally. WateriTech specializes in the 
development and application of open source hydrological and ecological models, IoT 
sensor monitoring and advanced data analytics, and focus on digital solutions for 
addressing water quality, flooding and drought challenges. WateriTech and partners 
have developed the highly recognized WaterWebTools platform, which is a user-
friendly web-platform for live streaming, quality control and postprocessing of sensor 
data, as well as operationalization of hydrological and water quality models for 
forecasting purposes. The WaterWebTools platform, which also allows transmission of 
data to customers own data platform or 3. party platforms, is widely used in Denmark 
and across Europe by the municipal and water utility sectors, private companies as 
well as research institutions. 
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Introduction 

The primary drivers of ecosystem metabolism include temperature, light, 
hydrology, and the quantity and quality of organic matter and nutrients (Battin 
et al. 2023; Caffrey 2004; Solomon et al. 2013). Metabolic rates can be derived 
based on different approaches, including isotope analysis, in-situ incubation 
experiments, field campaigns for monitoring the mass balance of carbon, and 
sensor technology. Advances in sensor technology during the past 10 years, 
including improved accuracy and stability and lower cost, has enabled a more 
widespread use of this approach for deriving metabolism, and this is now the 
preferred method in most studies (Hall and Hotchkiss 2017). Using one of more 
sensors installed in-situ, water temperature and oxygen concentration is 
measured at high frequency (typically 10-30 minute intervals). Using a 
process-based model that is calibrated to the daily variation in oxygen 
concentrations, GPP and ER can be estimated for a stream reach for each 
single day.  
 
The metabolism modelling approach for streams developed by WateriTech is 
based on a single sensor station, and inspired partly by the single station open 
channel diel oxygen method described by Holtgrieve et al. (2010) and Song et 
al. (2016), with several new advances, including advanced data quality control 
for cleaning of sensor data, more accurate numerical integration, use of 
differential evolution for model parameter optimization, parameter 
uncertainty estimation, parallel processing of model runs for large datasets, 
and operationalization of the model via the WaterWebTools portal (Trolle and 
Nielsen 2024). 
 
While additional data collection can be conducted when estimating 
metabolism, e.g. using a two-station method, and applying tracer 
experiments in the field for estimating key model parameters, this greatly 
increases the cost of metabolism estimates and hamper its application. In 
practice, several studies (e.g., Bernot et al. 2010; Beaulieu et al. 2013) have 
showed that the single station method often produces results that are 
comparable and not significantly different from a two station method – the 
latter thus providing marginal or no additional benefit for the accuracy. 
Estimation of key model parameters through automatic parameter 
optimization algorithms, for example the reaeration constant (K20), as done in 
the approach by WateriTech, is often also better than using empirical 
equations for determining K20 (Riley at al. 2013). When using different 
parameter optimization approaches for the single station method, the results 
are generally still comparable across the different optimization approaches 
(Grace et al. 2015). Hence, while additional sampling can of course always help 
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to resolve local heterogeneities in greater detail, the single station method 
generally produce stable, reliable and affordable estimates of metabolism for 
a stream reach. 
 
When estimating metabolism, this represents the dynamics of a certain 
stream reach length. A rough estimate of the distance (D, m) of the upstream 
reach that contribute to diel DO dynamics in the stream is D = 3v/K, where v is 
the mean water velocity and K (in a unit of h-1) is the reaeration rate (Reichert 
et al. 2009). Flow velocities in streams vary at least in a range between 0.1 and 
1 m s-1 and reaeration coefficients in a range between 0.02 and 5 h-1, which 
mean that the stream reach length that contributes to diel DO dynamics 
extends at least from 100 m to 10 km (Reichert et al. 2009). 
 

Data collection 

When estimating metabolism in streams, diurnal (e.g., 15 min intervals) water 
temperature and DO are required for a single station. WateriTech produces 
sensor stations for this specific purpose (Fig. 1), but data from 3. party can also 
be linked to the WaterWebTools platform, thereby enabling metabolism 
estimates for any location on the planet.  
 

 
Fig. 1. Example of an OPTOD optical oxygen and temperature sensor, which can be installed 
in a stream station. 

 
Besides in-situ sensor data, local data for incoming radiation and barometric 
pressure is also required. By default, WaterWebTools will automatically harvest 
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local data from the ERA5 gridded weather product, which is available globally 
in near real-time and hourly temporal resolution, and for spatial grids of 
approx. 30 km spacing. Time series of Secchi depth can also be utilized or 
alternatively estimated from a cosine seasonal function, and is used to derive 
photosynthetic active radiation (PAR) as a function of depth and time.  
 
 

Data pre-processing 

A series of pre-processing steps are first conducted to format raw sensor data 
and weather data into quality assured and quality controlled equidistant time 
series. 
 

Data cleaning and control 

To achieve adequate quality of the in-situ collected data prior to metabolism 
processing, the raw sensor data is initially harmonized with respect to 
sampling frequency to create an equidistant time series followed by filtering 
on sensor-specific error values. Hereafter, outliers are detected with a 
modified version of the SentemQC approach by van't Veen et al. (2025), which 
identifies and marks anomalies in the dataset using successive moving 
windows with varying window sizes. This method has proved efficient for 
cleaning sensor data, not only for identifying individual outliers, but also 
clusters of anomalies. 
 

Data resampling and interpolation 

After cleaning and control the data is processed further with resampling into 
half hourly intervals, and then smoothed using a 4-hour running window.  
These steps are based on experiences and recommendations from the 
scientific literature, including Staehr et al. (2012), Obrador et al. (2014) and 
Giling et al. (2017). 
 

Weather and light data 

Representative weather and light data are pre-processed according to the 
following steps: 

• Download local weather data including incoming short wave radiation 
(E, W m-2) and barometric pressure (P, kPa). 

• Convert short wave radiation into photosynthetic active radiation at 
the surface (PAR0, µmol m-2 s-1), where: 

PAR0 = E * 4.6 * 0.45 (Giling et al. 2017). 
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• The user may choose to use surface PAR0 in the metabolism model 
(compatible with the parameterization done in most stream studies), 
or, optionally, derive and use PAR at the centroid of the mean depth 
from Secchi depth by following the steps below: 

• Calculate Secchi depth (sd, m) for each day from cosine function 
(which reads maximum sd, minimum sd, and day of the year of 
maximum sd) or read this directly from external file 

• Calculate light attenuation (KD, m-1) from Secchi depth, where: 
KD = 1.7 / sd (Giling et al. 2017)  

• Derive PAR (µmol m-2 s-1) for each layer depth (z) layer based on Secchi 
depth, where: 

PAR(z) = PAR0 · e KD · z (Giling et al. 2017) 
• Interpolate PAR and barometric pressure to same temporal resolution 

as sensor data. 

 

Metabolism modelling 

The main body of the metabolism model is a differential equation (Holtgrieve 
et al. 2010), which describes the changes in oxygen concentration due to gross 
primary production (GPP), ecosystem respiration (ER), and the oxygen flux due 
to reaeration between the water surface and the atmosphere (Ds): 
 

∆𝑶𝟐

∆𝒕
=
(𝑮𝑷𝑷− 𝑬𝑹+ 𝑫𝒔)

𝒁𝒎𝒊𝒙
 

 
Where Zmix is the average mixed layer depth (m) for the stream reach. To be 
able to solve this equation, each of these terms has to be derived for each day. 
 

Gross primary production 

GPP (g O2 m-2 h-1) is calculated based on the approach in Song et al. (2016) 
and derived from Pmax, the maximum photosynthetic rate (g O2 m-2 h-1) at 
saturating light, α, the photosynthetic efficiency coefficient (g O2 m-2 h-1 [µmol 
photons m-2 s-1]-1), temp, the water temperature (°C), and P a temperature 
coefficient for primary production: 
 

𝑮𝑷𝑷 = 𝑷𝒎𝒂𝒙 ∙ 𝒕𝒂𝒏𝒉 (
𝜶 ∙ 𝑷𝑨𝑹

𝑷𝒎𝒂𝒙
) ∙ 𝜽𝑷

(𝒕𝒆𝒎𝒑−𝟐𝟎) 
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Where the temperature coefficient (P) is set to 1.036, as in Song et al. (2016). 
Pmax and α are two of the four parameters that are automatically calibrated by 
the model using a differential evolution algorithm. 
 

Ecosystem respiration 

The ecosystem respiration rate (ER) (g O2 m-2 h-1) is determined for each day 
from R20, the respiration rate at 20°C (g O2 m-2 h-1), and R a coefficient for the 
thermal dependence of respiration: 
 

𝑬𝑹 = 𝑹𝟐𝟎 ∙ 𝜽𝑹
(𝒕𝒆𝒎𝒑−𝟐𝟎) 

 
Where a temperature coefficient (R) of 1.073 is used, based on Jørgensen and 
Bendoricchio (2001). R20 is automatically calibrated by the model using a 
differential evolution algorithm. 
 
 

Atmosphere-water gas exchange 

The gas exchange between the water surface and the atmosphere (Ds, g O2 
m-2 h-1) is calculated from K20, the gas exchange coefficient of oxygen (m h-1) 
at 20°C, O2sat, the oxygen concentration (g O2 m-3) at saturation level at the 
given water temperature and barometric pressure, and K a temperature 
coefficient for reaeration: 
 

𝑫𝒔 = 𝑲𝟐𝟎 ∙ (𝑶𝟐𝒔𝒂𝒕 − 𝑶𝟐) ∙ 𝜽𝑲
(𝒕𝒆𝒎𝒑−𝟐𝟎) 

 
Where the temperature coefficient (K) is set to 1.024, as in Song et al. (2016). 
K20 is automatically calibrated by the model using a differential evolution 
algorithm. 
 
The overall flux oxygen between water and atmosphere flux can be either 
positive (i.e. oxygen going into the water from the atmosphere, when water is 
undersaturated with oxygen) or negative (i.e. oxygen leaving the water due to 
supersaturation). The oxygen concentration at saturation level is derived from 
the approach in Song et al. (2016): 
 

𝑶𝟐𝒔𝒂𝒕 = 𝒆
(−𝟏𝟑𝟗.𝟑𝟒𝟒𝟏+

𝟏𝟓𝟕𝟓𝟕𝟏𝟎
𝒕𝒆𝒎𝒑+𝟐𝟕𝟑.𝟏𝟓

−
𝟔𝟔𝟒𝟐𝟑𝟎𝟖𝟎

(𝒕𝒆𝒎𝒑+𝟐𝟕𝟑.𝟏𝟓)𝟐
+

𝟏𝟐𝟒𝟑𝟖𝟎𝟎𝟎𝟎𝟎𝟎
(𝒕𝒆𝒎𝒑+𝟐𝟕𝟑.𝟏𝟓)𝟑

−
𝟖𝟔𝟐𝟏𝟗𝟒𝟗𝟎𝟎𝟎𝟎𝟎
(𝒕𝒆𝒎𝒑+𝟐𝟕𝟑.𝟏𝟓)𝟒

)
∙
𝑷𝒂 ∙ 𝟎. 𝟗𝟗𝟖

𝟏𝟎𝟏. 𝟑
 

 
Where Pa is the barometric pressure (kPa). 
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Calibration of model parameters 

The metabolism model has been developed in Python, where the four model 
parameters: Pmax, α, R20 and K20, are calibrated for each single day. The model 
user can choose between a series of numerical integration approaches and 
time steps to solve the metabolism model, but the 4th order Runge-Kutta 
approach with an integration time step of 0.5 hour is used by default. A 
differential evolution algorithm is used to optimize the four model parameters, 
which will automatically compare sensor-based observations with the model 
estimated oxygen concentrations, and optimize the model fit to observations. 
The differential evolution algorithm seeks to minimize an objective function 
(by default set to the root-mean-squared-error) for each single day, and the 
final GPP and ER estimates are extracted from the calibrated model. Models 
with several parameters, such as the metabolism model, can exhibit 
equifinality, where good fits to observed data can be achieved by several 
different parameter value combinations, some unrealistic (e.g., Appling et al. 
2018). The model approach by WateriTech overcomes this by constraining 
model parameter optimization to realistic ranges, and also by allowing the 
option to run an ensemble of model parameterizations using different initial 
parameter seeds for the differential evolution algorithm. The mean and the 
variation in model parameterization and simulated metabolism can then be 
extracted. In practice, we have found that even though the metabolism model 
may exhibit some degree of equifinality, the controlled parameter search 
results in similar estimates of GPP and ER, and therefore the effect of running 
ensembles is somewhat limited. 
 

Operationalization and post-processing  

WaterWebTools integration 

 
The entire model workflow can be made operational via the WaterWebTools 
platform, where sensor data is live-streamed and pre-processed according 
to the steps described previously, local weather data is also harvested, and 
the metabolism model is executed operationally for each 24-hour time period. 
Parameter bounds used by the differential evolution algorithm, applied when 
optimizing the metabolism model, are constrained to value-ranges reported 
in the literature (e.g. Wilcock et al. 1998, Binzer et al. 2006, also see Appendix), 
which ensure that the calibrated model parameters are within naturally 
realistic ranges. The output from the model can be followed live via the 
WaterWebTools platform (Fig. 2).  
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Fig. 2. Example of how metabolic fingerprints have evolved through several years for a stream 
reach, viewed within the WaterWebTools portal. 
 
The daily metabolism can be used to track potential short-term impacts of 
for example storm water runoff during cloudburst, where there may be a 
degradation of the metabolic rates, usually followed by some days or weeks 
of recovery in the rates. 
 

Metabolic fingerprint 

If one or several years of metabolism data is available, we can also derive 
the metabolic fingerprint of the stream (Bernhardt et al. 2018). This 
represents the entire distribution of daily estimates of GPP and ER that are 
observed for a stream, produced through kernel density plots, which allow 
visualization of peak metabolic rates, the most dominant combinations of 
GPP and ER, represented by centroid(s) of the metabolic fingerprint, as well 
as the variance in their ratio (Fig. 3). 
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Fig. 3. The metabolic fingerprint (plot to the right) is a diagnostic tool first described by 
Bernhardt et al. (2018). It can be used for comparing annual patterns of metabolism across 
streams or across years for the same stream. The “fingerprint” is represented as a kernel 
density plot of daily estimates of GPP and R rates observed within the stream. 
 
The metabolic fingerprint can be produced for each single year, and then 
used to follow long-term trajectories of the ecological balance of streams, 
helping us track changes that can signal stress or improvements in water 
quality. Is the river responding to improved upstream wastewater treatment, 
can we see any effects of implementing best-management-practices in 
nearby agriculture, or does restoration of floodplains or other nature-based-
solutions have the expected benefits for the aquatic ecosystem? These are 
just some of the questions we can try to answer by keeping track of the 
metabolism. 
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Appendix 

Parameter bounds 

Parameter bounds used when running the differential evolution algorithm 
have been derived from a review of metabolism studies, thereby ensuring 
that calibrated parameters are within naturally realistic ranges. 
 

Parameter Unit Min. Max. References 
Pmax g O2 m-2 h-1 0.01 5.5* Wilcock et al. (1998), table 2  

min. Pmax = 0.03, max. Pmax = 1.91 
 

Binzer et al. (2006), table 2 
min. Pmax = 0.34, max. Pmax = 2.9 

 
Holtgrieve et al. (2010), table 3 

min. Pmax = 0.37, max. Pmax = 0.45 
 

Beaulieu et al. (2013), table 2 
min. Pmax = 0.0018, max. Pmax = 0.89 

 
Song et al. (2016), table A1 

min. Pmax = 0.087, max. Pmax = 0.56 

α g O2 m-2 h-1 
[µmol photons 
m-2 s-1]-1 

0.001 0.0115 Binzer et al. (2006), table 2 
min. α = 0.001, max. α = 0.0115 

 
Holtgrieve et al. (2010), table 3 

min. α = 0.0013, max. α = 0.0025 
 

Beaulieu et al. (2013), table 2 
min. α = 0.0011, max. α = 0.33 

 
Song et al. (2016), table A1 

min. α = 0.00375, max. α = 0.0021 

R20 g O2 m-2 h-1 0.05 2.75 Wilcock et al. (1998), table 2  
min. R20 = 0.065, max. R20 = 1.56 

 
Holtgrieve et al. (2010), table 3 
min. R20 = 0.28, max. R20 = 0.35 

 
Song et al. (2016), table A1 

min. R20 = 0.082, max. R20 = 0.47 

K20 m h-1 0.0035 0.4 Wilcock et al. (1998), table 2  
min. K20 = 0.0035, max. K20 = 0.33 

 
Holtgrieve et al. (2010), table 3 

min. K20 = 0.13, max. K20 = 0.27 

*Many of the Pmax values reported in literature are not corrected to 20°C, as many studies ignore the effects of 
temperature on primary production (i.e. they are more representative of the maximum of the actual growth 
rate at ambient temperature). The primary production rate in the model by WateriTech is corrected for 
temperature each time step, and therefore the Pmax is set to somewhat higher value than those reported in 
literature (but resulting in an actual growth rate at ambient temperature similar to that reported in literature). 


